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ABSTRACT 

Two independent methods are described for calculating the 

multiple scattering distribution for projected angle scattering 

resulting when very high energy charged particles traverse a 

thick scatterer. The single scattering law for projected angle 

scattering is taken to be the Rutherford scattering law for pro- 

jected angle scattering modified at small angles by electron 

shielding and at large angles by a nuclear form factor \+  ( tpftft, ) 

which gives the effect of the finite nuclear size. The calcu- 

lations can be carried through for any reasonable choice of ~4~ 

and have been carried through for two suggested choices of "j£ 

for the examples of fast n.-meson scattering in 2 cm and 5 cm 

thick lead slabs, with good agreement for the two methods of 

calculation.  The results are compared with the theories of 

Moliere and Olbert. 
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SECTION 1.  INTRODUCTION 

• -•: 

2 

3 

Several multiple scattering theories have been published *   »^»^ 

E. J. Williams, Proc. Roy. Soc. A169, £31 (1939); 

S. Ooudsmit and J. L. Saunderson, Phys. Rev. £8, 36 (191+0); 

H. S-. Snyder and W. T. Scott, Phys. Rev. J6_, 220 (1914-9); 

H. W. Lewis, Phys. Rev. 7j8, £26 (19?0). 

G. Moliere, Z. Naturforsh 2_a, 133 (191+7); la, 78 (191+8) 

S. Olbert, Phys. Rev. 8£, 319 (19^2); 

M. Annis, H. S. Bridge, and S. Olbert, Phys. Rev. 89, 1216 (19^3) 

H. A. Bethe, Phys. Rev. 89, 12^6 (1953) 

which are concerned with the angular distribution of particles 

passing, with no substantial loss of energy, through a thick 

material for which the single scattering law is the Rutherford 

cross section modified at small angles due to electron screening. 

In this paper we shall present two methods by which a 

multiple scattering distribution for projected angle scattering 

can be obtained from more general single scattering laws than 

those already treated. We shall be concerned in particular with 

single scattering which is Rutherford for a wide middle region, 

but Is modified both at large as well as at small angles.  In 

scattering from atoms the modification at small angles Is due 

to electron screening, while at large angles there can be modi- 

• 

page two 

L ~t  ••:-." v\Sv;-,)'^-.'.' 



^ 

R-83 

: . 

I 

fications due to additional forces ( as in the scattering of 

it mesons from carbon ) or due to the finite extension of the 

nucleus and the subsequent deviations from Coulomb's law inside 

the nucleus. We consider only the case where relatively small 

CP are important so the approximation <P ~  sin <^   ">C  tan <z>  is 

appropriate. 

There has been a good deal of experimental interest recently 5.6 

^ E. AmalOL and G. Fidecaro., Nuovo Cimento, £, 535  (1950); 

W. L. Whittemore and R. P. Shutt, Phys. Rev. 88, I3I2 (1952); 

E. P. George, J. L. Redding, and P. T. Trent, Proc. Phys. Soc. 

A66. 533 (1953); 

B. Leontic and A. W. Wolfendale, Phil. Mag. b^,  1091 (1953). 
6 M. L. T. Kanangara and G. S. shrikantia, Phil. Mag. I4J.,1091 (1953) 

- 

in the multiple scattering of (i-mesons. Experimental results, after 

being compared with the results of the Moliere  and Olbort-' 

multiple scattering theories have been interpreted as indicating 

the existence of an anomolous ^.-meson-nuclear interaction.  Among 

the many difficulties arising in the interpretation of these experi- 

ments (see Appendix B), one of the most obvious seemed to be the 

absence of a reliable estimate of the expected multiple scattering 

distribution from extended nuclei. 

In the Moliere multiple scattering theory the nucleus is 

treated as a point charge. The single scattering cross section 

is taken to be the Rutherford cross section modified, at small 

> 
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angles only, due to electron screening. This gives more scat- 

tering for large angles than would be expected from extended 

nuclei.  In the Olbert theory an attempt is made to estimate 

the effect of the nuclear extension by multiplying the Moliere 

projected angle single scattering law by a step function which 

cuts off all scattering beyond a given projected angle CD ~ \/R  • 

This, however, gives a very great underestimate of the multiple 

scattering for angles larger than CJ?, , as for large angles 

Olbert's distribution falls off as a Gaussian which soon is 

much smaller than even the coherent part of the single scat- 

tering law. 

In what follows we shall outline two distinct procedures 

by which a multiple scattering distribution can be obtained 

from given single scattering laws.  We deal with projected 

angle scattering as this is the usual experimental parameter. 

Our second method could be extended to include the total scat- 

tering angle.  Sections 2 and 3 describe the two methods we 

have developed for dealing with multiple scattering problems. 

The results of these two sections have been used to calculate 

the expected multiple scattering distribution of relativistic 

(i-mesons (cp = 1 Bev) passing through 2 and f> cm of lead.  Agree- 

ment between the two methods is excellent.  Appendix A contains 

a discussion of the single scattering croaa section used for the 

above calculation.  Appendix. B gives a review of the experimental 

situation with regard to ^.-meson scattering. 

. 1 
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SECTION. 2. DESCRIPTION OF THE FIRST METHOD OF COMPUTING M(f) 

- 

The first method to be described consists of folding together 

several simpler distributions in a manner somewhat analogous to 

the actual effect of successive layers of the scatterer. Although 

this method is simple in principle, it seemed on first inspection 

that it would be extremely tedious to carry through such folding 

operations.  This did not prove to be the case when the computing 

techniques described below were used, and we give a rather detailed 

description of the procedure for this reason. 

The method is based on the observation that if T(y)d(f>  , 

the probability of a single scattering through cp to <p-t-a<p to 

one side in projected angle, is given, then the multiple scat- 

tering distribution M((p) is completely defined.  (Note that f(<p) 

is not normalized to unity, but integration over all angles gives 

the average number of single scatterings in traversing the sample.) 

Furthermore, if the actual scattering slab were replaced by a 

series of consecutive slabs A, B, C having single scattering 

laws fA(Cp), *"B(<p), , where 

f(<p) * fA(<p) + fB(<f) +  (1) 

then the same multiple scattering distribution results on 

traversing all of the slabs in series.  If MA(<p), Mg(<p),  

are the separate multiple scattering distributions for A, B,— 

then M( CP)   results on folding ML, Mfi, together. 

'•a... page five 
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For the case of two components 
oo 

M( 

***** 

<f) = { MA(q») ^r%)dCf, 
—o© 

(2) 

We require that only small <p are important oo sin <f K tan ?« <p, 

and effectively consider <f   as ranging from - oo to + oo . 

The distribution law for small angles is Just the Rutherford 

scattering law modified due to electron shielding.  Following 

Moliere we represent this as 

f'(f)=f(?
2+7m>-3/2 ^ 

where <f is the projected angle and %  is the screening angle 

1.13 + 3.76 (Z/137/)2]1/2 
Tm     j^7 cp 

I        and Q - U* (« t/A) (8 e2/pv>2. "ere (. t/A> gives the scatterer 

I thickness in atoms/em2, p is the momentum of the incoming 

particle; % - Vpi V is the incoming velocity a is the "Fermi- 

I        Thomas radius" of the atom = 1.67 * loVW/^.*). Z is the 

atomic number of the scattering material (the incident particle 

is taken to be singly charEed) and me is the electron mass. 

The modification in the above distribution law at larger 

angles is given by multiplying f'lf ) above by %lf/Z  > *° 

give 

(4) 

"jf (<p/<p ) is discussed in Appendix A, 
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The trick of this method consists of selecting some angle 

tf>'  which is a little smaller than the R. M. S. width of the 

gaussian which approximates M( W ) at small angles, f.( <4>)  is 

then set equal to f ( f )  for \<?\<f  and *--  0 for \f\ } Q1 , 

while fB( 9 ) a 0 for | <pj< <p' and = f (Cp ) for I 9 | ^ ^' . The 

multiple scattering due to f. is given with good accuracy by the 

gaussian 

MA(?) - (2^<cp
2>)-1/2 e-?2/2«?2> (5) 

J where 

so 

(7) 

<T?2> = * / f1 ( ?2 + ^m5"372 df (6) 

o 

since 3^(f/f0 ) = 1 for 1^9' . Also f'»f^for  a reasonably 

thick scatterer so we can simplify the resulting expression 

< ?2> •QI (T^/2/      + [in u+4^*2 ;jo 
o 

<Cf2>   -,   Qf la  (2?/fc>   -  lj 

It is convenient to use the parameter /u = ^/^o and re- 

place f(^?), Q, ^ , and <p  by the equivalent quantities g(y), 

B, y , and y'. For the case of a u.-meson with cp = 1 Bev and a 

2 cm lead scatterer, <J>   = O.O3OI4. radians = 1.7i<-0, B = 0.126, and 

y = 9«6 x 10"^. For the choice y' = 0.5 we obtain <y^>= 0.75, 

showing that this is a satisfactory choice for y .  Then, for 

this case, 
wo   2 /n ^ 

(8) MA1(y) = (1.50 it)"
1/2 e^ A .50 
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whore the subscript 1 on M., emphasizes that this method ^ivea 

the distribution in terms of y = f/<f>0.   (The distribution Tunctlon 

Mp(x) of the next section is given in terms of the angle 

characteristic of the Moliere theory.) 

The multiple scattering distribution M„, (y) corresponding 

to single scattering angles .£ <f  -  y <f0    is obtained u^ing the 

following considerations.  If we chose, not the full scatterer 

thickness, but some sufficiently small fraction << , then the 

single scattering law o<. g(y) for  (y|>y would have essentially 

unit weighting for no scatterings at all, and very small weight- 

ings for all  | y| > y .  The corresponding multiple scattoring 

distribution would, then be identical to the single scattering 

law for  ly/ > y since there is negligible likelihood of more 

than one scattering.  If this distribution is folded together 

with itself the multiple scattering is obtained for fraction 2oc 

of the total thickness.  This distribution differs from the 

single scattering lav/ by double scattering terms proportional to 

^ , so the fractional deviation is proportional to oC« 1.  If 

the multiple scattering law for thickness 2«< is folded together 

with itself the multiple scattering law for thickness l^oC  results, 

For I yl > y this distribution has a fractional deviation from 

double that for 2K of an amount double that of the previous 

process (always neglecting higher order effects).  Thus the net 

fractional correction from the single scattering law is 3 times 

that obtained in the first folding.  Subsequent foldings for 8o(, 

• 
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l6«: , 32*c , etc. have net fractional corrections (1 + 2 + l|.), 

(1 + 2 + I}. + 8), (1 + 2 + Ij. + 8 + 16), etc. times that of the 

folding starting with thickness oC •  These sums, 7, 15, 31, ...., 

would be 8, 16, 32,... if we had started our folding process with 

an infinitesimal fraction of <^, since going from o< /2 to ©<. gives 

l/2, from oC/]\  to <^/2 gives 1/1+, etc. for the extra series terms 

(1/2 + l/lj. + ....) =1. We thus note that the net fractional cor- 

rection after any stage of folding (neglecting higher order ef- 

fects) is just double the fractional correction obtained by the 

given step (i.e. comparing the multiple scattering for y ^ 0 for 

the given thickness with double that for half thickness). We 

make use of the above feature to select as our starting thickness 

a fraction 2~n of the total for which the fraction correction of 

any of the points in the first folding is not too large. This 

fractional correction is then doubled to account with good ac- 

curacy for the effect of not starting the process with an in- 

finitely thin sample.  In the calculations for 2 cm lead and 

cp = 1 Bev it was found to be suitable to start with 1/8 the 

sample thickness, while l/l6 the sample thickness was suitable 

for 5 cm lead.  The actual folding opex'atiDns can be carried 

through with good accuracy by replacing the continuous fg( 0> ) 

by a discontinuous function having valxxes only at regular grid 

points.  For the 2 cm lead case where y = 0.5, the region 0.5 

to 0.7 was represented by 0.2 g(0.6), etc. so values were de- 

fined only at y. = 0, + 0.6, + 0.8, + 1.0,   with a maximum 

page nine 
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y, = 6.0 used in the calculations. For the 5 cm lead case we 
i 

used y = 1.2 and 0,1].  intervals to y = 10.0.  It was found con- 

venient and permissible in these cases to neglect contributions 

to values of y / 0 where |y)< y1.  (In cases where these contri- 

butions are not negligible it requires only slight additional 

computing time to include them.)  The remaining computing tricks 

can best be illustrated in terms of the example of the calculation 

for the 2 cm lead case where we started with 1/8 of the total 

thickness.  Let  AI/^Y-J) be the lumped weights given to the grid 

points 0, + 0.6, + 0.8,  , + 6.0 to represent the single scat- 

tering law (0.2/8) g (y^) for \7j\>   0.5, with 

f (0) =1-2^ 
7« V° 4(v (9) 

A calculation sheet is now prepared in which values of y = 

0, 0.2, O.I4., , 6.0 are entered in the first column.  The 

values of V  -,/Lji) are entered in the second column.  An uncor- 

rected multiple scattering distribution y   -1/1.(7) is then com- 

puted where 

iWV  -  If l/8<Vj?l/8(*J  " ^ <10> 
M 

Use is made of the fact that terms for yk ^  y*/2 appear 

twice and we can write 

JC(TJ) -*E K(%)Q%-y*)+ [C(%M]K (U) 

a<Vi/i 
The calculations thus proceed as fallows.  In the third 

page ten 

- ' 
-I 

J 



R-83 

? 

I Ado). column the values of   /, /g(y.) are multiplied by 

The first number appearing in the column (y. = 0 here) is circled 

and is only counted once in the subsequent summing. The next 

column entry starts at y. = 1.2 and contains products   /.(0.6) 
A0 J   ./J. - 

JCtXy*  -  0.6).  Again the first term at y, = 1.2 i3 circled. 

The next column starts at y, = 1.6 and contains terms   ^(°«8) 

JljklA  "  0.8), Subsequent columns are formed similarly to 

produce a triangular array (requiring less than 1 hour of slide 

rule computing time). Contributions from negative y. are usually 

negligible but the terms for the first few negative values of y. 

can be added if necessary. The rows are then added as indicated 

by Eq. 11 to give  Ai/h (?•))• Ths function   J^/U^^ \ls thon 

compared with 2 ^C-, /g(y1) for y. ^  0 and the differences are ad- 

ded to  /'./i (y.) to obtain the corrected multiple scattering distri- 

bution ^i/|,(y.t)» T*113 ls similarly folded with itself to teive 

Zl/2^1^» an<^ a r^P6****011 gives J(Xl*)  which correspond^ to 

MB1(y). Values of MA1(y) (Eq.8) are computed for y.,= 0, 0J2, 

0.I4., ——, 6.0e The final M, (y) is just the sum of gaussianjs 

centered at 0, + 0.6, + 0.8,   + 6.0,  .      '      \ 

^(j.)=2if4)M*(il-ft) ;      ««> 
The value of M,(y.) for any y. is computed using Eq* 12. For 

y. near 6.0 the contributions from y^ > 6.0 must be estimated. 

Fortunately the single scattering g(y) and £(7^)  are decreasing 

positive functions of y so the terms in Eq. 12 have a maximum for 

y ^ y- and the remainder can be estimated by noting the behavior 

page eleven 
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of the series for smaller values of y,. . 

The above observations suggest an easy method for estimating 

M,(y) for large y in terms of MA1(y) and MB1(y) without actually 

carrying through the process indicated by Eq. 12.  If MB1(y) 
CB-n 

be approximated by a straight line on a semi-log plot of the form 
.,,,.,,,.„ ,A.   :•:.! -- (.v ... , ... 

• J      MB1(yk + x) = MR1(yk) e'fi,  ,,,,,, ,,,,-..   (1.3 > 

! 

then Eq. 2 gives 

- 

£j& 
M iCyj) =MB1(yj) e 

2 a' (114-) 

This may be regarded as increasing MB1(y,) by a certain 

amount on the semi-log plot to produce ^(y^). Alternatively, 

it can be written 

MB1(tjj) = M^ +A) (15) 

corresponding to a sidewise displacement A of MB1(y,-) 
to generate 

M.(y1 +A). The quantity A is obtained by plotting both M41(y) 

and Mnl(y) on the same semi-log plot as in Fig. 1. Let ^ be 

the value of y at which MA1(y) has the same (logarithmic) slope 

that MB1(y) has at y = y '. Using Eq. 13 shows that ^  = <y >/a 

sc ^ = A* •/2.  Here a is assumed to be a slowly varying function 

of y.  (The plot by comparison can be made rapidly, using two 

straight edges.) When the semi-log plot of MB1(y) also has 

curvature so 

(yk.+ x)«MB1(yk) e-
x/aex/2b 

M Bl 
(16) 

pnge twelve 
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1  . then the equation analogous to Eq. li). is 
K2 V„2N 

I 

• 

,1/2 Mi>j)~IW [>2A*2 - <y2> ) J     e 2*2<b2 - <y2> > 

which,   for h? >></y2> can be written approximately aa 

M1(yj) ^MB1(yj) e 

g^[l + (a
2 + <y2>)/b2] 

(17) 

Inspection of the final result shows that thi« o.0r>r>~—-ds 

again to a sidewise displacement of M^ by A*0.6A' to generate 

Mx in the examples considered. An alternate method of sidewise 

displacement is obtained by noting that MAl(x) MB1(y-x) has its 

maximum at A , about which it resembles a displaced gaussian. 

This suggests that M^yj) is generated mainly from MB1(yk) in the 

region yk - 7j -A^ s0 M^y) should be generated using MB1(y - A ) 

multiplied by e-A
X/*<V*>   #  (The last factor ±g  ^ ^^ ^(^'j/ 

MA1(0).)  These methods of generating the approximate curve for 

M1(y) can be carried out rapidly by simple displacements on the 

semi-log plot and are quite instructive in giving insight into 

the behavior of M^y).  The difference between Mm (y) and g (y) 

decreases rapidly if the choice of the dividing angle y' is in- 

creased.  This is compensated largely by an increase in the width 

of the gaussian MA1(y), and thus in the required sidewise dis- 

placement A' to generate M^y) from MB1(y).  It is of interest 

that the second method (of the next section), at large angles, 

just folds the^sinqie scattering law at large angles with a 

pa<?o thirteen 
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gaussian characteristic of the Moliere theory, which is somewhat 

wider than M.,(y) for the method of selecting y  discussed above. 

Figs. 1, 2, and l\.  show the characteristic functions when 

only elastic processes are included.  It is seen that M,(y) re- 

mains considerably greater than gB in a region where the Moliere 

curve is almost the same as the point nucleus single scattering 

curve.  This is consistent with the above discussion since the 

logarithmic slope of the point nucleus g(y) is much smaller than 

the extended nucleus g(y) so the required sidewise displacement 

is less, and the result of a given sidewise displacement is also 

less (using Eq. 1^.). When inelastic scattering is included, 

Pigs. 3 &n<i 5» the curves approach those for a point micleus, 

decreased by a factor Z~  at very large y. 

It is instructive to make a further comparison of this method 

and the second method (of the next section) for y ;>• I4., say. This 

method folds together the small angle multiple scattering gaussian 

with the large angle multiple scattering distribution, while the 

second method essentially folds together a wider gaussian and the 

law for single scattering.  The second method uses an expansion 

In terms of the parameter (I4.G)~ described below, neglecting 

terms of order (i|G)  and beyond. This very roughly corresponds 

to neglecting multiple large angle scattering, so the first 

method would be expected to be more reliable in cases where such 

effects are not negligible. 

As a final point of interest, we note that the curves giv<*n 

in terms of y apply for all relativistic momenta where /Q   0^ 1. 
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In the example considered, 7 is in units of X.7U- Bev degrees* 

Thus multiplying the absis3a, and dividing the ordinate by 1»7^ 

gives the distribution per Bev degree unit of ( c p f)• This is 

shown by noting that f(f )d f » g(y)dy so 

g(y) = § (y2 + TM)"372^ H
(y» wh«r0 

B • «TT » X* (nf^-'2 (-p-> 

»«-V. • t#;£ C1;i3 + 3*76 (z/137f )211/2 and 
oe 

r  = e /m c 3, 2,82 x 10" ^cm are independent of p for oe 

$*>    1. 

SECTION 3.  MODIFIED MOLIERE THEORY 

A. Methods and Notation 

To introduce the mathematical methods and notation used in 

this saution we review the derivation of the general expression 

for the projected angle multiple scattering distribution for an 

arbitrary single scattering cross section. The derivation fol- 

lows that of Moliere and ClbsrtJ and applies when only relatively 

small angles are important. 

If f( *? )d f is the probability that an incident particle 

undergo a single scattering through the projected angle f to f + d f 

page fifteen 
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in its passage through the scatterer, then 

00 

where o. = ) i(<p)a<p        ,  is the probability that the particle in 

passing through the material has exactly n single scatterings 

through the projected angles <f-.f    9p» --"# 9r with angular inter- 

vals d <plt  d <f2,  — , d <f>n.    e"
ot is the probability that there 

be no other scatterings besides <JP-f <R, -— <^ ,  Since we are 

interested only in the final angle (p  we integrate over inter- 

•'«)«'«••••&; 

mediate angles and put 

where  ]p £<D)A®       is the probability that the particle emerge at 

a projected angle between <f    and (f +  d <f     after exactly n scat- 

terings in the material. The factor l/nl occurs because in the 

integration over intermediate angles the n£ permutations of  <p. 

---- (p have each been counted. Since Bq, 18 holds for independent 

events the order of the n scatterings is irrelevant. 

Now introduce the Fourier representation of the single scat- 

tering cross section. Let 
if <P 

-CO 

3(f)^  I*c^e    ^ 

(20) 

so 

(21) 
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(where g( £ ) is not related to g(y) of the previous section). Put- 

ting Eq. 20 into Eq. 19 gives 

*i ...J[f/<1,-<*?»-< 
(22) 

The integrations over ft,   -— ^n-i 8ive delta functions which, 

after the  ^ —-  J - integrations yield* 

(23) 

The probability of a final projected angle <P  after any number 

of scatterings is just the sum of the   *  (*?)vover all values 

of n» oo to 

fl-o (2l|.) 

where we use the result from Eq. 21 
oO 

( f(<f ) df = g(0) 

From this it can be seen that the solution of the multiple 

scattering problem is equivalent to the evaluation of the integral 
v  2 

in Eq. 2lj.. Moliere has given an evaluation of this integral 

in the ca36 of a screened Coulomb field. The main trick in 

evaluating the integral lies in the observation that the existence 

of multiple scattering will smear out fine grained irregularities 

in the final distribution so the high Fourier components give a 

negligible contribution. 

Moliere used the single scattering law of Eq. 3 appropriate 
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for a point nucleus with eleotron shielding* We are interested 

in the case where this is modified by the nuclear "form factor" 

ft7N( *f/ <&.)  as in Eq, l\..    Prom the discussion of Appendix A we 

note that 
C I     for smai/ lq»/fo| 

^(.y^o)  ~ (Z~'-for Uv3e |<y/<f>„|   (our choice) (25) 

with the rapid change occuring when <Z> ~ 2 <7 • 

Olbert's method consisted of using a step function for J^ 

As mentioned in the introduction, this gives a very large under- 

estimate of the multiple scattering for <^ > > <po  where the Olbert 

function falls off as a gaussian while, for any reasonable form 

factor, the multiple scattering distribution lies above the 

single scattering distribution f ( <ff ) for large y f  and thus far 

above the Olbert distribution. 

: 

B,  First Derivation of M2 (x) 

We first treat the multiple scattering from extended nuclei 

as a correction to the Moliere theory by setting jT = [l+• (cfN~ Oj , 

where ( jfy* - l) gives the correction term. This is the method 

used by Olbert for his step function.  Such a treatment yields 

satisfactory results for small angles, but is inconvenient for 

i 
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i 

large angles where a second method (described following this) ia 

preferred, Eq. I4. is written 

(27) 

. 

Th9n Qfv
?v« ^u^m^i 

3<?h3« (28) 

The first integral has been treated by Moll^re' and to a 

'  See H, A. Bethe, Reference 1|, for a discussion of this integral. 

sufficient degree of accuracy, is 

-06 

(29) 

5-; 

to 

i 3 

We now introduce the various parameters typical of the Moliere 

theory, following the notation of Olbert. 

G-k^C^d?) 5 * = <*ectf">   31= C*«ff     (30) 
V3 „-/ 

and      Q 
•vfi   rzZO 7 

is independent of the momentum in the relativistic region. 

Putting Eq. 29 in 28, and using 30 gives 

where  J = f Ce'^lQf^^VXOjHW 
(x* +- x * j *. V»A. 

(31) 
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Inserting this result into Eq. Zk we obtain in terms of the 

parameter X : 
oO 

-06 

•^-^/HuMt^kl] 

02) 

We use the fact that G is a reasonably large number (for moderate 

foil thickness G varieB from about 7 to 15) and expand the portion 

of the exponential which is multiplied by (2G)"1. This gives, 

to first order in (2G)" , 

M, W dx = & \H CV "nli + &$*•$,+ £* + • 'I (33) 

After performing the integrations over f[   this becomes 

(3U) 

where .)] r-(x + *'^ -«-*') 

c *  iVx-^Vf 

-06 d 
f' (X;«>) is the Moli^re function. The integral K(x) which oc- 

curs in Eq. 3I4. must be evaluated numerically for a given *TU O /Xo) 

Eq. 3I4- is seen to have the form that was desired originally. The 

integral which contains the effect of the nuclear extension oc- 

curs as a correction to c"^/{^  * fc f '<*J0*)   which is the 

Moliere multiple scattering distribution for- a point nucleus in 
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terms of the projected angle parameter x. This corresponds to 

^ « 1 for all x. If 3j£(x/xQ) ** the Olbert step function, Eq.26, 

the correction term becomes the Olbert correction function K(x;x ) '  o 

if use is made of the fact that x^ > > x » o    m 

Using Eq. 3lj. the multiple scattering distribution oan be 

determined for a particular ^(^/^J,). However, E4, 3I+. becomes 

inconvenient for large values of x, because in that case K(x) 

becomes almost equal to fJ (xj 00)  and the difference between two 

large numbers must be used to give a small one. For large values 

of x therefore it is better to treat the modified cross section 

directly, rather than as a correction to the Moliere distribution. 

This is done as below. 

C.  SECOND DERIVATION OP M?(X). 

law. 

J —T^T^r^ m)- J<") =1 j —Zf^^r^ (35> 
Introducing the Moliere parameters x, il  and G as defined 

Eq. 30 ws get 

Qnd *° in* jo.cn) 

page twenty-one 

Consider again the Fourier transform of the single scattering 



' 

R-83 

Eq, 36 of course is the Moliere-Fourier transform if ^ (x'A0) = !• 

In the case of the point nucleus this integral is evaluated through 

the observation that there exists an angle x' = K. at which the 

integral can be split such that K.>7 x but K.4<-—  where ^^ 

is the frequency in the neighborhood of the main Fourier compon- 

1 
! „_ .__ .. 2 

ents.^ Then in the integration up to H. the frctor (cos -n x' - 1) 

can be put equal to -(-^ x» )  /2 and, in the integration from 

V{. to <=Q , (x»  + xm )"*'     becomes x'""-'. Both integrations can 

be performed, and the splitting point H. cancels up to terms of 
2 

the order ^ , which are very small. 

In the case with which we deal the argument is modified as 

follows,  Again we split the integral at an angle K. where x «. 
m 

x* - H.<<,y\0   • Now we make use of the important property of 

the form factor given in Eq. 2£ that °Q-     (x'/x ) xl for small 

values of the argument x'/-* .  In particular, for x1 = I/I4. our 

chosen form of ^£ (Appendix A) gives jt    (l/^)~ 0,96 for the 

2 cm lead case, and 0,93 £°r  the £ cm lead case, The integral 

up to U. is thus the same as in the case of the point nucleus. 

Performing the first integration and using the fact that x«• K , 

Eq. 37 becomes 

1 -here J,^^ , ($U ^ ~ Va\ 
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It is understood that K. must be much smaller than 1. If 

-1 now a("y\  ) is put into Eq. 36a and the terms multiplied by (20) 

are expanded in the same way as before^the "\   integrations, the 
••« 

following result is obtained for the first order in (2G-)  • 

IV> - £{>•>4<«MMim S-6 k N (^ (3,) 
where  fj (_ ^ s ( jfcC^W. T (x» H "id 

TUti « e."        +  e. 
In its present form Eq. 39 is convenient for calculation only 

for large values of x(x- Ij. in the £ cm lead case) because in this 
2 

case e~  is so small that the precise value of K does not influ- 

ence the result* 

However, for smaller values of x the exact value of K is of 

importance.  In order that the expansion of (cos vjx'-l) in Eq. 37 

be correct K. must be much smaller than 1. However, it is in- 

convenient to evaluate the final integral of Eq. 39 numerically 

for very small values of l\, 

We can see more clearly what error is introduced if K. is al- 

lowed to become large by doing the following. Expand T(x,h ) 

of Eq. 39 in powers of 2xX .  Then neglecting terms of order 
2 

X^ or (*X )U gives T(x,K )- 2 K 2 e"x (2x2-l) 
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Integrating N( fC, X) from K, to L and letting °^ ( A /x  )  = 1 

in this integral we obtain 

;= ^[ex^ fe*£*C**K0^b/i-*4*-iG »&>*>] M,c* 

But this is just the same result obtained by letting K, = L in the 

Fourier transform s( 71 )   of Eq. 37.  Thus allowing /^ to become 

large introduces the same error as would be introduced if the 

final result were expanded in powers of 2XA. 

To overcome this difficulty one can use the property of the 

form factor that ^(A/^«)~l f°r values of A much larger than 

Tf"1    .  Then  J V3 T (XjX)J^ can be evaluated analytically 

where L •5s* l^fer ^his makes the numerical integration J A »"CX>A)^^A«) ^ 

practicable.  In doing this it will be seen that the dependence 

upon t(_  vanishes and a convenient and accurate expression for 

M~( X ) is'obtained. We observe that if L ~l/l|. than A  can be 

considered small even if 2XA  is not. Thus we can expand 

in T( ^ > ). 

.*. 
-A 

-X 
T(*,X) = ae   e V (l+o) 

a- 
taking only terms up to A     •  We evaluate 

J" 
K. 

'This, after some labor, neglecting terms in  ^ or higher, gives 

L __ 
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(1*2) 

Putting this result Into Eq, 39 gives 

*F\T 
where ere7 P* V J .1, »i\   , » 

and 

In our earlier communication by the same title, Leon N. Cooper 

and James Rainwater, Phys. Rev. 9Ji, 1107 (19$U-)> q(L,x) was given 

as 2(2x2 - 1) q (K ) » 2(2x2 - 1)^, (VL/l.26) which was a suf- 

ficiently good approximation in the example there considered* 

P.  EVALUATION OF THE INTEGRALS 

The integrals \£ (x) and N(L, x) which occur in expressions 

for the multiple scattering distributions derived above can easily 

be evaluated by numerical means. N(L, x) in particular can be 

evaluated conveniently for values of L = l/i). or 1/2, and for such 

•• 
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values of L Eq. I4.3 Is accurate.  These integrals do not depend 

on the momentum of the incoming particle but rather on/ , which 

%>  1 in the relativistic region.  Thus a single computation is 

sufficient for all relativistic momenta. For different thick- 

nesses, or atomic number, the form factor is changed only through 

the change in ")C    in T7\ (X/Xo) .  Table 1 gives the function 
_a       o      N      y 

T(X,A)Afor various values of %   at grid spacings of I/I4. for A • 

Table 2 gives the values of the function q(L, X ) for L = l/ij. for 

relevant values of X . 

K(x) and N(L,X ) have been evaluated numerically for the 

2 cm and £ cm lead cases for grid spacings of A x = 1/2 and I/J4. 

using Weddle's rule. 10 Comparison of the results for the two 

10 H. Margenau and G. M. Murphy, "The Mathematics of Physics 

and Chemistry", D. Van Nostrand Company, Inc», New York, 

N. Y., 19^3, Page lj.6l. 

grids shows the largest numerical errors occur for the small 

values of X where the correction term is unimportant.  For 

lareer values of X  ( X >, 3) the change in the numerical results 

for grid changes from 1/2 to I/I4. is less than 2 percent.  In all, 

the errors in the distribution due to numerical errors resulting 

from the integration, for a grid of I/I4., appear to be less than 

1 percent. 

For very large values of X asymptotic formulas can be 

developed. For a form factor which decreases asymptotically as 

i 
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cons t./ 
*-3 

the asymptotic expression is 

_  f, , n ( n +  1)  .        "I 
'M 

Such expressions give reasonably accurate results for x ^ 6 (5 per 

cent or better).  The procedure described near the end of section 

2 is also readily adapted to this method for a quick graphical 

correction procedure to obtain M~(x) from the single scattering 

law. For real atoms at the larger angles incoherent scattering 

predominates so that the form factor becomes *fy(9/%) 1Z- Z~ • Then 

the multiple scattering distribution is given by the asymptotic ex- 

pansion of the Moliere distribution multiplied by Z" .  This is 

M2(x)dx = ^ [ l + ^+^ + ~J 

The results presented in this section have included only 

the first powers in (2G)" ,  It is possible to obtain the next 

order, but in view of the large uncertainty in the nuclear form 

factor Ij-^ (c{'/cf»)   it was not considered worthwhile at present to 

consider this term. 

We wish to thank Professor Robert Serber for helpful dis- 
tKe. 

cussions of^single proton form factor. We also wish to thank 

Miss Hilda Oberthal for her assistance with the computations of 

the results of the modified Moliere theory. 

*": • 
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APPENDIX A,  THE SINGLE SCATTERING LAW 

The single scattering laws used in the calculations were ob- 

tained in the following way. The Rutherford formula, modified at 

small angles due to electron shielding, is given in Eq. 3 rollowing 

Moliere, When nuclear extension is considered, this must be 

multiplied by a nuclear form factor 3£ (*?/<?•) which contains a 

part representing elastic coherent scattering plus a part rep- 

resenting inelastic scattering j£(WoJ • Fjj ( f/f0  ) + F* (<p/ft  ). 

In principle, if the nuclear wave functions were known exactly, 
n 

one would prefer to calculate F„ by an exact phase shift analysis 

for spin 1/2 particles, and calculate Pj. by considering in detail 

all of the possible final states of the scattering system. How- 

ever, the nuclear charge distribution, and the nuclear wave 

functions are not known exactly, and, in fact, measurements of 
C 11 F„  for fast electrons  are providing valuable information con- 

R. W, Pidd, C. L. Hammer, and E. C. Raka, Phys. Rev. 92, 

k3<>    (1953); 

R. Hofstadter, H. R. Fechter, and J. A. Mclntyre, Phys, Rev. 92, 

978 (1953); 

L. I. Shiff, Phys. Rev. 22, 988 (1953); 

R, Hofstadter, B. Hahn, A. W. Knudsen, and J. A. Mclntyre, 

Phys. Rev. 9J£, 512  (195U; 

D. R. Yennie, D. Ge Ravenhall, and R. N. Wilson, Phys. Rev. 9j£, 

500  (195I4-) 
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cerning the nuclear charge distribution.  In particular, mu- 

12 11 mesonic x-ray studies,   fast electron scattering  and other 

12 Val. L. Pitch and James Rainwater, Phys. Rev. 92, 789  (1953); 

L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801  (1953); 

John A. Wheeler, Phys. Rev. 92, 812  (1953); 

D. L. Hill and K. W. Ford, Phys. Rev. %,   1617 and I63O (195U-) 

experimental results 12, 13 which are sensitive to the nuclear 

13 P. Bittor and H. Feshbach, Phys. Rev. 92, 837 (1953); 

B. G. Jancovici, Phys. Rev. ?_5_, 389  (195U-); 

D. C. Peaslee, Phys. Rev. 95., 717  (19510 

charge distribution, all agree that the nuclear charge distri- 

bution is more compact than had previously been believed to be 

the case.  For a nuclear charge distribution /*(r) = /    for 

r <, R = r A1'^, and/(r) = 0 for r>R the radius R has clear 

meaning and a best match to the above experiments gives TQ^1,0 

to 1.2 x 10" 3cm for not too small A.  Elementary considerations 

of quantum mechanics show that such a model cannot be strictly 

correct, and /Mr) must be a continuous function of r.  In this 

case, although the different experiments are not always sensitive 

in the same manner to the shape of/'(r), the equivalent uniform 

model r is usually taken to be that value which gives the same 
o 

/r2> as for the non-uniform f (r).  Prior to late 1953 the 
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value of r would have been considered to be "well known" and of o 

magnitude l.lj. to 1.5 x 10" -^crn, Thua all of the comparisons-5' 

between the experimental and expected multiple scattering distri- 

butions used this larger value of r » 
n 

Until recently it has been customary to calculate FN using 

the Born approximation which gives a linear superposition of 

the scattering amplitudes of the individual protons so the scat- 

tered intensity is of the form 

i 
2 -»-*"* where A is the scattering intensity of a single proton, q = k-kQ 

represents the vector momentum change in scattering, r. is the 

position coordinate of the j  proton in the nucleus, and the 

evaluation is for the ground state | I i>  of the nucleus. Thus 

(P2) '    is just the Fourier transform of the nuclear charge 

distribution. For a uniform nuclear modelj letting y = <f /<f0 , 

this gives 

2 
F
N *y* = -3"" (sin y - y cos y) J (A2) 

11 which gives diffraction minima at y = li.lj.9, 7.7, etc.  Schiff 
n 

in  particular has considered the form of FN (y) in Born approxi- 

mation for various simple analytic forms fov/^ir).    We note that 
C F„ is of the form of the square of a r6al amplitude term, and 

thus gives diffraction minima when the amplitude changes sign. 

For distributions sufficiently peaked in the center and with a 

gradual "tailing-©ff", the amplitude may nob change sign and 

1 > 

page thirty 



R-83 

F-- will be a smoothly decreasing function of y,  It is readily 

seen from Eq. Al that PN(0) = 1 and, by expanding the exponentials 

and using inversion symmetry through r = 0, that the leading term 

C ? in the decrease of F„ for small y depends on (ry .  In this 

connection it is interesting to note that the widely used 

Williams1 formula uses V(r) = (Z e2/r) (1 - e~2r'R) for which 

/°{r)  = U|yf/3) (R/r) e~2r/R, and <r2>= 3R2/>„ Here />   is the 

charge density for a uniform nucleus of radius R.  Although 

Williams implied that this distribution closely approximates a 

uniform model, and it has been taken by others  as corresponding 

to the uniform model, it actually corresponds to a rather strongly 

peaked distribution about r = 0 with <^r )>    larger by a factor of 

3>/2 than for a uniform distribution, and thus a correspondingly 

C more rapid initial decrease of P„ for small y»  For larger y it 
Q 

gives a uniform decrease of P„ with y with an asymptotic form 

16/y*" for large y.  In the region of large y Eq. A2, between 

minima, has a steady decrease with y which can be estimated by 

neglecting the sin y term and setting  jcos y S 1 to give an 

asymptotic form 9/y , which is below that for the Williams distri- 

bution. 

The detailed phase shift calculations of Yennie, Ravenhall, 

and Wilson, using various assumed P (r), show that the shape of 

P^ (y) is energy-dependent and significantly different from the 

Born approximation value for high Z materials.  In particular, 

the scattering amplitude is a complex number which circles the 
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value zero in the complex plane when "changing sign11. Thus the 

"diffraction minima" are largely missingr or are greatly reduced 

in magnitude compared to the Born approximation results. This 

feature is also apparent in the experimental results and had led 

to an initial "Born approximation interpretation" thaty^ (r) must 

resemble an exponential distribution.  The interpretation favored 

at the time of this writing is thaty^tr) can be fairly constant 

for values of r containing most of the charge distribution, with 

a gradual dropping off at the "surface". 

In view of the above results, and with the consideration that 
Q 

we wish to choose a form for F„ which will not underestimate the 

expected multiple scattering due to the known electromagnetic 

interaction of mu-mesons with protons in examining the results 

of experiments investigating possible "anamolous scattering", 

we have chosen the following form for P^« For y = 0, 1, 2, 3 

we choose Fji = 1.00, 0.82, 0.£0; and 0.l£ to approximate Eq. A2 

after the effect cf the first diffraction minimum is "removed", 

A smooth curve through these points is then joined smoothly to 

F^ = 12/y^" for y ^ k»   this being between the Williams formula 

and the value obtained above for a uniform distribution.  In 

principle thi? should be applied to the croas section for total 

angle scattering rather than for projected angle scattering as 

we do here. The consequences of this approximation are discussed 

following the discussion of F . c 
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ficult to perform exactly. Amaldi, Fidecaro, and Marian! + have 

^ E. Amaldi, G. Fidecaro, and F. Mariani, Nuovo Cimento £» 

553 (1950) 

carried out detailed calculations of the inelastic and elastic 

scattering expected, using a particular independent particle 

nuclear model.  For incident particles of very high kinetic energy 

and cp -*"  100 Mev), a Born approximation treatment similar to 

that used in the theory of x-ray scattering by atoms should be 
1^ reasonably accurate and gives the result, as for x-rays, -'  that 

•^  c. f.  A. H. Compton and S. K. Allison, "X-rays in Theory 

and Experiment", D. Van No strand and Co.  (1935), Chapter 3. 

F* 22 Z-1 (1 - F^) times the form factor for the scattering by a 

single proton. This last factor must be included if the proton 

is not effectively a point charge (due, say, to meson cloud ef- 

fects).  Amaldi etal " have particularly emphasized this point 

and have calculated the expected effect of the proton "size" on 

the basis of a simple model. Experimentally, however, it seems 

that the proton charge distribution should be treated as being 

confined to a surprisingly small volume on the basis of electron 

scattering experiments,   and, by inference, from the interpre- 

J. A. Mclntyre and R. Hofstader, Bulletin of the American 

Physical Society, Vol. 29, paper II (also see paper 12)  A.P.S, 

meeting at Seattle, Washington, July, 195^« 

page thirty-three 

. ^ri^^sBfrar-• mp**unu'^1 •  -.--••. • * •• 



R-83 

I 

'-J 

17 tation ' of the experiments on the neutron-electron interaction, 

• 

17 See L. I. Foldy, Phys. Rev. 8j_, 675  (1952) for a discussion 

of this subject and for reference to earlier papers. 

The experiments show that the proton form factor is essentially 

unity for cp ~200 Mev and at angles ~ 90°, so we take it to be 

essentially unity for cp cp  values considered in this paper. For 

large enough value of cp <f>  this factor will eventually become 

important and require consideration. 

If the single proton form factor is set equal to unity, the 

above expression for FN can be understood by analogy with x-ray 

scattering where the "inelastic" scattering corresponds to modi- 

fied Compton elastic scattering, where the recoil momentum is 

taken up by a single (moving) electron rather than by the atom 

as a whole. The final states of importance correspond to recoil 

electron momenta centered about the photon momentum transfer, 

modified by the initial electron momentum distribution, which 

is given by the Fourier transform of the ground state wave function 

of the atom.  For charged particles of kinetic energy and cp >> 

100 Mev, and for y>> 1, the final states of importance should 

be attainable with moderate energy loss, so the expression for 

the total scattering intensity in a given direction can be written 

with fair accuracy by summing over-all final states, keeping q, 

for a given angle, the same as in the elastic case. 
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(A3) 

by closure. For an independent particle model Eq. Al and Eq. A3 

lead to the above quoted result for P^. Thus we set 

3£ = C+tf= tf+z'V'-^) (AI4.) 

The remaining point to be considered is the error intro- 

duced when -ft.  is applied to the law for projected (rather than 

total) angle scattering*  For a do/dQ law varying as <f>      ,  the 

projected angle single scattering law is obtained by multiplying 

da/dO. by <f CC*;, where CO) = n/2, h/3,  16/15, 5Vl6, and 32/35 

for n B I4., 5, 7, 8, and 9 respectively (CO) -2.J c^nu <f> <* <f% 
o 

In going from ifl =Ij. for Rutherford scattering to V\ • 8, (which 
Q 

is obtained when the asymptotic form of F„ multiplies the Ruther- 

ford scattering, c(n) is reduced by the factor of 5/8•  This rep- 

resents an extreme situation since \j-„  is more slowly varying, 

V/e note that the above effect can approximately be taken into 

account by choosing r '***' 10 percent larger than otherwise when 

applying ^f„ to the law for projected angle scattering.  In the 
.11 

examples we choose r = 1.1 x 10 J  cm, corresponding to r  ^ 

1,0 x 10  ' cm for do/dfi.  In view of the uncertainty concerning 

the exact form for the true ^(y), wo consider this approxim- 

ation to be adequate for the present. 
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APPENDIX B.  DISCUSSION OF THE EXPERIMENTS 

ON MU-MESON SCATTERING 

5,6 

The interest of the authors in the multiple scattering theory 

was mainly stimulated by the possible consequences of a strong 

anomolous mu-meson-nucleon interaction on the interpretation of 

12 the mu-mesonic x-ray experiments.   Cosmic ray experiments on 

the scattering of fast mu-mesons by nuclei suggested that some 

anomolous scattering exists, but the interpretation of the experi- 

ments are not completely unambiguous, and there is considerable 

disagreement on the magnitude and existence of the effect. When 

these experiments were analysed, the expected multiple scattering 

distribution for an extended nucleus was obtained by various ap- 

proximations such as comparing the experimental results with the 

predictions of the Moliere and Olbert theories, or by using the 

Williams theory.  In all cases the old "large" nuclear size was 

used which gives <r >   twice that favored by recent experiments. 

Thus the experiments were always analysed on a basis that under- 

estimated the coulomb multiple scattering.  Aside from the results 

of the experiments discussed below, we note that the mu-mesonic 

x-ray results indicate that any anomolous energy independent 

nuclear potential for the mu-meson can in its effect at most be 

equivalent to a slight change in the choice of the nuclear radius 

when calculating the coulomb interaction.  This could not explain 

any significany portion of the anomolous scattering reported in 
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some of the experiments. Also, experiments on the nuclear lnter- 
1 ft 

action by Annis et al  can be explained without invoking any 

Amaldi and Fidecaro-^ 

18 M. Annis, H. 0, Wilkins, and J. D. Miller, Phys. Rev. 9Jt, 

IO38 (19^) 

anomolous interaction.  Such an "anomolous interaction" would have 

to be strongly energy-dependent and thus only appear strongly at 

high energies to explain the low energy experiments. 

Amaldi and Fidecaro-3 investigated the large angle scattering 

of fast mu-mesons in the energy bands 200 Mev to 320 Mev and ^> 320 
: 

Mev, using a counter hodoscope.  They compared the large angle 

multiple scattering in iron and lead, emphasizing the iron re- 

suits as far as anomolous scattering is concerned. About S> x 105 

incident mesons were counted and results for iron were consistent 

with no anomolous interaction.  In their series 2 run on iron 2I4.9, 

168 particles were incident and 3 scattered particles were ob- 

served in each energy band. When an extra 200 gm/cm of bricks 
were 
«sa placed above the apparatus to decrease the number of protons 

1 etc., 20I4., 91I4- particles were incident with one scattered count 

in the lower energy band and none in the higher energy band. The 

latter numbers are about the expected values for scattered protons, 
il 

etc. with that amount of filtering.  They set an upper limit for 

88?-'' —29  2 M: "anomolous scattering" of ~ lt..5> x 10  7cm /nucle«» in the lower 
-29  2 / energy band and ^ 2.3 x 10  7cm /nuclean. in the upper energy 

band.  These values assume isotropic scattering for the anomolous 
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part. 

Whlttemore and Shutt investigated the multiple scattering of 

negative mu-raesons in 5 cm of lead for particles having 0.3 Bev ^ 

cp ^ 3«1 BQv using two cloud chambers and a magnet for momentum 

analysis. Their experimental points essentially fall on the Scott- 

Snyder (Moliere) curve for p<f£ 13 Bev degreest  with one point at 

17 Bev degreeB a factor of about two below the Moliere curve (but 

with a large statistical uncertainty). Prom Fig. 5 these points 

would also fall above our theoretical curve. The principle dif- 

ficulty in the interpretation of these results is the question of 

the certainty that only mu-mesons were involved.  It is of interest 

in this connection that the later experiments were conducted under- 

ground, or, in one case, using 1 meter of lead absorber above the 

cloud chamber to assure greater beam purity. Also we should like 

19 to point out that measurements  on the scattering of cp **• 200 Mev 

• 

y John 0. Kessler and Leon M. Lederman, Phys. Rev. 9i+, 

689  (19510 

n-mesona on Pb show differential cross sections for elastic plus 

inelastic scattering which are always ~0.1 barn or larger. By 

contrast, the elastic scattering experiments using electrons of 

comparable momentum give differential cross sections which are 

~ 10  barns at 120°, a factor of 10-* below the it-meson cross 

section.  This contrast is admittedly extreme, but it emphasizes 

the importance of not underestimating the possible importance of 
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small percentages of beam contamination In such experiments. 

The remaining experiments used greater absorber thickness at 

sea level, or operated underground to minimize beam contamination. 

They have the common feature, however, that the momentum distri- 

bution of the incident particles was not measured directly, but 

was assumed known from other sources. Any error in the assumed 

known momentum distribution would tend to affect all of these 

experiments in a similar fashion. The fact that the observed 

scattering distributions are not given directly as a function of 

p ^> makes comparison of their final curves with our calculated 

M( f)  difficult. 

George, Redding, and Trent measured the multiple scattering 

of penetrating cosmic ray particles in 2 cm lead plates at 60 m.w.e. 

underground using a counter-triggered cloud chamber. Three 

experimental arrangements were used for the triggering counter 

telescope involving 0, f>, and 10 cm lead below the cloud chamber, 
i 

The  particles were  all assumed to be |i-mesons  and  the momenta of 

t 

the individual particles were known only to be above the cutoff 

values determined by the lead absorber thickness. The analysis 

was made by assuming that the energy d* stribution was flat for 

E << E = 12 Bev.  The experimental distribution N( <f ) was com- 

pared with one calculated using a weighted average of gaussian 

functions (one for each energy) In accord with the above pre- 

scription for the assumed energy distribution. No anomolous 

scattering was observed using 10 cm of lead, but a small amount 

of "anomolous scattering" appeared at larger angles when 0 or 5 cm 
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lead was used. They conclude that no anomolous scattering is ob- 

served for kinetic energies )>^  200 Mev, and some may exist for 

lower energies.  It is interesting to note that the curves for 

0 and 5 c!n lead show essentially the same excess over their 

theoretical curves whether point nucleus scattering is included 

or not.  It would be desirable to have a direct measurement of 

the momentum distribution of the incident particles. 

Leontic and Wolfendale used a multiplate cloud chamber at sea 

level with a counter telescope that required that detected par- 

ticles traverse 1 meter of lead above the chamber, six 2 cm lead 

plates inside the chamber, and 0, $,   or 10 cm lead below the 

chamber.  It was assumed that the 1 meter of lead excluded all 

but ^.-mesons from the measurements.  The main analysis compared 

the maximum scattering in any of the center four plates with the 

r. m. s. angle for the four plates.  The analysis made the as- 

sumption that the basic multiple scattering law for any given 

particle should effectively be a gaussian at all angles if no 

anomolous scattering were present.  By an ingenious analysis they 

showed that the results were inconsistent with this assumption. 

A further analysis assumed that an "anomolous scattering gaussian" 

would be superimposed on the normal multiple scattering gaussian 

in some Frail fraction of the plate traversals.  They then ob- 

tained a best matching of parameters.  Unfortunately, the selection 

criterion for oonsidere1 events was biased in favor of selecting 

cases where "anomolous scattering" (or the non-gaussian multiple 

20 scattering tail) occured. Dr. Wolfendale informs  us that a 
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preliminary re-examination suggests that the essential features 

of the results will not be seriously altered on correcting this 

bias factor, but we have not seen the details of such a re-examin- 

ation. 

The meaeurementfl of Leontic and Wolfendale have been exten- 

ded by McDiarraid* using a different and interesting analysis. 

20 Private Communication. We wish to thank Professor G. D, 

Rochester and Dr. A* W, Wolfendale for corresponding with us 

concerning the analysis of the experiments of the Manchester 

group on ^.-meson scattering. The paper by McDiarmid is scheduled 

for publication in Phil, Mag, 

The results seem to contradict those of George, Redding and Trent 

in that no anomoloua Scattering is observed for low energies. At 

higher energies the experimental results are between the Molie"re 

and Olbert multiple scattering curves for a (partially) assumed 

distribution of incident particle energies. The results are closer 

to the Molie*re than to the Olberv curves. We have not, however, 

performed the detailed folding together of our final curve with 

their derived momentum distributions as is necessary for a quant- 

itative comparison. 

References to earlier papers will be found in the articles 

discussed ab^ve. 
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FIGURE CAPTIONS 

Pig. 1. Curves illustrating the first method of computing the 

multiple scattering distribution M,(y) for cp = 1 Bev 

in 2 cm Pb, including only coherent scattering, g = 

single scattering law;  M., = multiple scattering gaus- 

sian for single scatterings through y ^. 0,5; M• = 

multiple scattering distribution for single scatterings 
n 

through y > 0,5; F is the assumed coherent nuclear 
N 

form factor. Multiply y by 1.7U- for Bev degrees, A 

Pig. 2. 

nuclear size R = 1,0A 1/3 
-1 •a 

x 10 Jcm was used for all 

of the examples of the figures as discussed in Ap- 

pendix A, 

Curves for the same case as in Pig, 1, The Molie*re 

and Olbert multiple scattering distributions are 

shown for comparison with M,(y).  The Olbert distri- 

bution is for a single scattering cutoff angle of y « 

1,0, The point nucleus and extended nucleus single 

scattering distributions are g and g. 

Curves for cp = 1 Bev and 2 cm Pb using ^TN for the 

total elastic plus inelastic scattering,  g = point 

nucleus single scattering law; g = g J~„  is the as- 

sumed extended nucleus single scattering law; M.. 

is the resulting multiple scattering distribution. 

Multiply y by 1.7U- for Bev degrees. 

Pig, I4., Curves for cp = 1 Bev and 5 cm Pb using only coherent 

scattering, g , g, JTM, and M1 have the same meaning 

*ig« i* 

L ._: 
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FIGURE CAPTIONS (Continued) 

as in the preceding figures. Multiply y by 1.714- for 

Bev degrees. 

Fig* $•  Curves for op = 1 Bev and $  cm Pb using the total elastic 

plus inelastic scattering. 'The symbols have the same 

meaning as in the preceding figures. 
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TABLE II.    VALUES OF q(L.*)  for L • l/it.     (Eg. Ii3? 

q^.*) 

0 3.230 

.5 1.595 

1.0 -3.218 

1.5 -11.339 

2.0 -22.07 

2.5 -3^.65 

3.0 -U7.14.0 

3.5 -57 .W 

iwo -6O.35 
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